A fast symmetric SVD algorithm for square Hankel matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fast symmetric SVD algorithm for square Hankel matrices

This paper presents an O(n2 log n) algorithm for computing the symmetric singular value decomposition of square Hankel matrices of order n, in contrast with existing O(n3) SVD algorithms. The algorithm consists of two stages: first, a complex square Hankel matrix is reduced to a complex symmetric tridiagonal matrix using the block Lanczos method in O(n2 log n) flops; second, the singular values...

متن کامل

A Lanczos bidiagonalization algorithm for Hankel matrices

This paper presents a fast algorithm for bidiagonalizing a Hankel matrix. An m×n Hankel matrix is reduced to a real bidiagonal matrix in O((m+ n)n log(m+ n)) floating-point operations (flops) using the Lanczos method with modified partial orthogonalization and reset schemes to improve its stability. Performance improvement is achieved by exploiting the Hankel structure, as fast Hankel matrix–ve...

متن کامل

Fast Algorithms for Toeplitz and Hankel Matrices

The paper gives a self-contained survey of fast algorithms for solving linear systems of equations with Toeplitz or Hankel coefficient matrices. It is written in the style of a textbook. Algorithms of Levinson-type and of Schur-type are discussed. Their connections with triangular factorizations, Padè recursions and Lanczos methods are demonstrated. In the case in which the matrices possess add...

متن کامل

Analysis of a Fast Hankel Eigenvalue Algorithm

This paper analyzes the important steps of an O(n 2 log n) algorithm for nding the eigenvalues of a complex Hankel matrix. The three key steps are a Lanczos-type tridiagonalization algorithm, a fast FFT-based Hankel matrix-vector product procedure, and a QR eigenvalue method based on complex-orthogonal transformations. In this paper, we present an error analysis of the three steps, as well as r...

متن کامل

A Square Block Format for Symmetric Band Matrices

This contribution describes a Square Block, SB, format for storing a banded symmetric matrix. This is possible by rearranging “in place” LAPACK Band Layout to become a SB layout: store submatrices as a set of square blocks. The new format reduces storage space, provides higher locality of memory accesses, results in regular access patterns, and exposes parallelism.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2008

ISSN: 0024-3795

DOI: 10.1016/j.laa.2007.05.027